Conditional Generative Adversarial Networks for Commonsense Machine Comprehension
نویسندگان
چکیده
Recently proposed Story Cloze Test [Mostafazadeh et al., 2016] is a commonsense machine comprehension application to deal with natural language understanding problem. This dataset contains a lot of story tests which require commonsense inference ability. Unfortunately, the training data is almost unsupervised where each context document followed with only one positive sentence that can be inferred from the context. However, in the testing period, we must make inference from two candidate sentences. To tackle this problem, we employ the generative adversarial networks (GANs) to generate fake sentence. We proposed a Conditional GANs (CGANs) in which the generator is conditioned by the context. Our experiments show the advantage of the CGANs in discriminating sentence and achieve state-of-the-art results in commonsense story reading comprehension task compared with previous feature engineering and deep learning methods.
منابع مشابه
Improvement of generative adversarial networks for automatic text-to-image generation
This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...
متن کاملAutomatic Colorization of Grayscale Images Using Generative Adversarial Networks
Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...
متن کاملConditional Image Synthesis with Auxiliary Classifier GANs
Synthesizing high resolution photorealistic images has been a long-standing challenge in machine learning. In this paper we introduce new methods for the improved training of generative adversarial networks (GANs) for image synthesis. We construct a variant of GANs employing label conditioning that results in 128 × 128 resolution image samples exhibiting global coherence. We expand on previous ...
متن کاملConditional generative adversarial nets for convolutional face generation
We apply an extension of generative adversarial networks (GANs) [8] to a conditional setting. In the GAN framework, a “generator” network is tasked with fooling a “discriminator” network into believing that its own samples are real data. We add the capability for each network to condition on some arbitrary external data which describes the image being generated or discriminated. By varying the ...
متن کاملAuto-painter: Cartoon Image Generation from Sketch by Using Conditional Generative Adversarial Networks
Recently, realistic image generation using deep neural networks has become a hot topic in machine learning and computer vision. Images can be generated at the pixel level by learning from a large collection of images. Learning to generate colorful cartoon images from black-and-white sketches is not only an interesting research problem, but also a potential application in digital entertainment. ...
متن کامل